Active Mechanisms of Vibration Encoding and Frequency Filtering in Central Mechanosensory Neurons.

نویسندگان

  • Anthony W Azevedo
  • Rachel I Wilson
چکیده

To better understand biophysical mechanisms of mechanosensory processing, we investigated two cell types in the Drosophila brain (A2 and B1 cells) that are postsynaptic to antennal vibration receptors. A2 cells receive excitatory synaptic currents in response to both directions of movement: thus, twice per vibration cycle. The membrane acts as a low-pass filter, so that voltage and spiking mainly track the vibration envelope rather than individual cycles. By contrast, B1 cells are excited by only forward or backward movement, meaning they are sensitive to vibration phase. They receive oscillatory synaptic currents at the stimulus frequency, and they bandpass filter these inputs to favor specific frequencies. Different cells prefer different frequencies, due to differences in their voltage-gated conductances. Both Na+ and K+ conductances suppress low-frequency synaptic inputs, so cells with larger voltage-gated conductances prefer higher frequencies. These results illustrate how membrane properties and voltage-gated conductances can extract distinct stimulus features into parallel channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibration Suppression of Fuel Sloshing using Subband Adaptive Filtering (RESEARCH NOTE)

One of the main vibration problems of aerospace vehicles with liquid fuel propulsion system is fuel sloshing. This phenomenon is a low frequency vibrational challenge which can affect the motion of the vehicle and degrade the stability of the main control system. In this regards, the motion of the liquid will be very critical when the frequency of the sloshing is very close to the frequencies o...

متن کامل

Computational mechanisms of mechanosensory processing in the cricket.

Crickets and many other orthopteran insects face the challenge of gathering sensory information from the environment from a set of multi-modal sensory organs and transforming these stimuli into patterns of neural activity that can encode behaviorally relevant stimuli. The cercal mechanosensory system transduces low frequency air movements near the animal's body and is involved in many behaviors...

متن کامل

Frequency doubling by active in vivo motility of mechanosensory neurons in the mosquito ear

Across vertebrate and invertebrate species, nonlinear active mechanisms are employed to increase the sensitivity and acuity of hearing. In mosquitoes, the antennal hearing organs are known to use active force feedback to enhance auditory acuity to female generated sounds. This sophisticated form of signal processing involves active nonlinear events that are proposed to rely on the motile proper...

متن کامل

Encoding properties of the mechanosensory neurons in the Johnston's organ of the hawk moth, Manduca sexta.

Antennal mechanosensors play a key role in control and stability of insect flight. In addition to the well-established role of antennae as airflow detectors, recent studies have indicated that the sensing of antennal vibrations by Johnston's organs also provides a mechanosensory feedback relevant for flight stabilization. However, few studies have addressed how the individual units, or scolopid...

متن کامل

Power gain exhibited by motile mechanosensory neurons in Drosophila ears.

In insects and vertebrates alike, hearing is assisted by the motility of mechanosensory cells. Much like pushing a swing augments its swing, this cellular motility is thought to actively augment vibrations inside the ear, thus amplifying the ear's mechanical input. Power gain is the hallmark of such active amplification, yet whether and how much energy motile mechanosensory cells contribute wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 96 2  شماره 

صفحات  -

تاریخ انتشار 2017